The Entropic Erdős-Kac Limit Theorem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Central Limit Theorem for the Solution of the Kac Equation

We prove that the solution of the Kac analogue of Boltzmann’s equation can be viewed as a probability distribution of a sum of a random number of random variables. This fact allows us to study convergence to equilibrium by means of a few classical statements pertaining to the central limit theorem. In particular, a new proof of the convergence to the Maxwellian distribution is provided, with a ...

متن کامل

Berry–Esseen bounds in the entropic central limit theorem

Berry–Esseen-type bounds for total variation and relative entropy distances to the normal law are established for the sums of non-i.i.d. random variables.

متن کامل

A strong limit theorem in Kac-Zwanzig model

A strong limit theorem is proved for a version of the well-known Kac-Zwanzig model, in which a “distinguished” particle is coupled to a bath of N free particles through linear springs with random stiffness. It is shown that the evolution of the distinguished particle, albeit generated from a deterministic set of dynamical equations, converges pathwise toward the solution of an integrodifferenti...

متن کامل

The Local Limit Theorem: A Historical Perspective

The local limit theorem describes how the density of a sum of random variables follows the normal curve. However the local limit theorem is often seen as a curiosity of no particular importance when compared with the central limit theorem. Nevertheless the local limit theorem came first and is in fact associated with the foundation of probability theory by Blaise Pascal and Pierre de Fer...

متن کامل

J un 2 00 6 SIEVING AND THE ERDŐS - KAC

It is natural to ask how ω(n) is distributed as one varies over the integers n ≤ x. A famous result of Hardy and Ramanujan [13] tells us that ω(n) ∼ log log x for almost all n ≤ x; we say that ω(n) has normal order log log n. To avoid confusion let us state this precisely: given ǫ > 0 there exists xǫ such that if x ≥ xǫ is sufficiently large, then (1 + ǫ) log log x ≥ ω(n) ≥ (1 − ǫ) log log x fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Theoretical Probability

سال: 2014

ISSN: 0894-9840,1572-9230

DOI: 10.1007/s10959-014-0550-3